





UPPER ST. PAUL RIVER A preliminary coloured version of this map appeared page-size, together with a report, based on data collected during the 1999 field season (Gower, 2000). The present map also incorporates field data collected by Eade (1962), making use of original field notes recorded by K.E. Eade and assistants. The map is augmented by follow-up examination of stained slabs, petrographic thin sections, whole-rock geochemical analyses, and inclusion of U-Pb geochronological results (Gower et al., 2008b) and previously unpublished Nd-Sm isotopic data (R.A. Creaser, unpublished - see digital database). Localities designated as mineral occurrences are based on observations made during the 1999 field season (see Mineral Occurrence Table; current to 2009).

being positioned from outcrop data and extrapolated using structural observations, regional aeromagnetic data and topographic As is characteristic of metamorphic and plutonic terranes, individual outcrops are typically very complex, and commonly embody several different rock types. Generally, the unit polygon depicted is based on what was judged to be the dominant rock type present, but this approach was not universally followed, due to the exigencies of specific situations, such as the need to emphasize minor rock types deemed to have high significance. All rock types recorded from any individual outcrop may be determined by consulting the 'Unit designator' string for that locality given in the digital database. The user is alerted to the fact that, in the digital database, no attempt has been made to reconcile rock names applied to field outcrops, versus those applied to stained slabs, or petrographic thin sections. Differences may be due to subsequent, more refined identifications, but other

reasons may apply, such the sample (or thin section) not being representative of its source material. Unit designator and polygon

Since the preliminary report, there has been minor re-interpretation and redefinition of geological boundaries and units. The

changes result from a compilation approach applied to the whole of eastern Labrador, and from integration with data from

adjacent map areas. Data station locations are based on GPS-supported readings. Geological boundaries are poorly controlled,

Gower, C.F., 2010: Geology of the Upper St. Paul River area (NTS sheets 13B/01, 02, 07 and 08), southeastern Labrador. Seological Survey, Mines Branch, Department of Natural Resources, Government of Newfoundland and Labrador, Map 2010-22,

labels applied are based on an awareness of such factors.

originality and correctness of data and/or products.

Elevations are in metres above sea level. Contour interval is 20 metres.

UTM (Universal Transverse Mercator) Grid Zone 21, NAD (North American Datum) 27.

Geological cartography by T. Paltanavage, Cartographic Unit, Geological Survey, Department of Natural Resources. Digital NTS base maps (13B/01, 02, 07 and 08) used for this map are available from Surveys and Mapping Branch, Natural Magnetic declination at the centre of the map at the start of 2010 was 22° 01' W.

Dr. C.F. Gower, Geological Survey, Mines Branch, Department of Natural Resources, Government of Newfoundland and Labrador, P.O. Box 8700, St. John's, NL, A1B 4J6, Canada. Email: cgower@gov.nl.ca. Copies of this map may be obtained from the Geoscience Publications and Information Section, Geological Survey, Mines Branch, Department of Natural Resources, Government of Newfoundland and Labrador, P.O. Box 8700, St. John's, NL, A1B 4J6,

NOTE: Map 2010-22 is one of twenty-five maps on the geology of the Grenville Province in eastern Labrador and adjacent eastern Makkovik Province produced by the Geological Survey, Mines Branch, Department of Natural Resources, Government of Newfoundland and Labrador.

Mines Branch website: http://www.nr.gov.nl.ca/nr/mines/index.html.

NOTE: The purchaser agrees not to provide a digital reproduction or copy of this product to a third party. Derivative products should acknowledge the source of the data. DISCLAIMER: The Geological Survey, a division of the Department of Natural Resources (the "authors and publishers"), retain the sole right to the original data and information found in any product produced. The authors and publishers assume no legal liability or responsibility for any alterations, changes or misrepresentations made by third parties with respect to these products or the original data. Furthermore, the Geological Survey assumes no liability with respect to digital reproductions or copies of original products or for derivative products made by third parties. Please consult with the Geological Survey in order to ensure

1962: Geology, Battle Harbour - Cartwright, coast of Labrador, Newfoundland. Geological Survey of Canada, Map 22-1962.

2000: Geology of the Upper St. Paul River map region, Grenville Province, southeast Labrador. In Current Research. Newfoundland Department of Mines and Energy, Geological Survey Branch, Report 2000-1, pages 147-167. Gower, C.F., Kamo, S. and Krogh, T.E. 2008a: Indentor tectonism in the eastern Grenville Province. Precambrian Research, Volume 167, pages 201-212.

Gower, C.F., Kamo, S., Kwok, K. and Krogh, T.E. 2008b: Proterozoic southward accretion and Grenvillian orogenesis in the interior Grenville Province in eastern Labrador; evidence from U-Pb geochronological investigations. Precambrian Research, Volume 165, pages 61-95.

MINERAL OCCURRENCE DATA SOURCES 386004 5815168 GSNL (field notes; CG99-220) 013B/07/Mic001 Indication 391643 5806282 GSNL (field notes; CG99-155) GSNL (Geological Survey of Newfoundland and Labrador)

GEOLOGICAL DATA SOURCES

Mothed Poferance(s) Comples	Rock type Inherited/detrital age Emplacement age Metamorphism/closure/ cooling/undefined Pb loss age	Mineral abbreviations: a - allanite b - baddeleyite m - monazite r - rutile t - titanite x - xenotime z - zircon Concordia abbreviations: c - concordant nc - near-concordant l.i lower intercept u.i upper intercept	Sample number Rock type Epsilon value Depleted mantle age Age of rock (? age inferred)	Rb/Sr Geochronology Sample number Rock type Initial Sr ratio calculated from time t Age of rock (? age inferred) (* one of two or more analyses)	Sample number Rock type Age Mineral; Method (* average of two or more analyses) Biot - biotite Hbl - hornblende Musc - muscovite WR - whole rock plat - plateau age tot. gas - total gas age
()	lethod Reference(s)	Samples			
U-Pb Gower et al. (2008b) CG99-050A; CG99-050B; CG99-195A; CG99-195B; CG99-259A; CG99-259B; CG99-259C; CG99-364 Nd-Sm Creaser (unpublished) CG99-195A; CG99-254; CG99-364		CG99-050A CC	CG99-050A; CG99-050B; CG99-195A; CG99-195B; CG99-254; CG99-259A; CG99-259B; CG99-259C; CG99-364		

Kilometres

SYMBOLS

MINERAL OCCURRENCE

ABBR	EVIATIONS		
Amz	Amazonite	Geological contact	
Au	Gold		
Bt	Biotite	Normal fault	
Cly	Clay	Otalian alla facili	
Cr	Chromium	Strike-slip fault	$\sim \sim \sim \sim \sim \sim$
Cu Fe	Copper	Throat foult	
re Fel	Iron Feldspar	Thrust fault	
FI	Fluorite	Normal fault reactivating thrust	
Gnt	Garnet	Normal fault reactivating trifust	
Ilm	Ilmenite	Fold axial plane (1st, 2nd, 3rd generation)*	
Lst	Limestone	Tolu axiai piane (13t, 2nd, 3rd generation)	
Mgt	Magnetite	S-fold axis (1st generation)	
Mo	Molybdenite	o loid axis (1st generation)	2+ >
Ms	Muscovite	Z-fold axis (1st generation)	2+ >
Neph	Nepheline	2 1010 dxio (101 gonoration)	-1->
Ni	Nickel	Dyke (affinity unspecified)	
Pb	Lead	Dyno (ammy anoposmou)	
Pd	Paladium	Fault (sense of movement unknown, dextral, sinistral, normal)	
Po	Pyrrhotite	r aun (correc or moromonic arminomi, aoxidia, ornollar, mornar)	
Pt	Platinum	Joint	
Pyr	Pyrite		1 1
Saph	Sapphire	Linear fabric (1st, 2nd, 3rd generation)*	
Si .	Silica		
Stn	Dimension stone	Fold axis (1st, 2nd, 3rd generation)*	>>>
Th	Thorium		
Tourm	Tourmaline	Slickenside	
Tpz	Topaz		
U	Uranium	Geological data station	×
V	Vanadium		
Zn	Zinc	Geological data station (no fabric measured)	*
Zr	Zirconium		
` '	Occurrence reported	Bedding (tops known, unknown)	
	but validity suspect	Enclave	
		Foliation (1st, 2nd, 3rd generation)*	,
OTE:			
	occurrence and structural	Gneissosity (1st, 2nd generation)*	*** ****
mbols do not appear on each map.		Igneous layering (tops known, unknown)	
ertical stru	uctures use 90° dip value.	Vein	
Generation of structure only applicable observation site.		Shear zone (sense of movement unknown, dextral, sinistral, reverse)	├ ╼ ┤╶ ╾ ╴╶ ╾
		Mineral occurrence	×
		Geochronology location	•
			-

MAP 2010-22 OPEN FILE 013B/0030 GEOLOGY OF THE UPPER ST. PAUL RIVER AREA (NTS SHEETS 13B/01, 02, 07 & 08) SOUTHEASTERN LABRADOR

LEGEND

LATE PALEOPROTEROZOIC (P₃ 1800 – 1600 Ma) LATE LABRADORIAN GRANITOID INTRUSIONS (P_{3C} 1660 – 1600 Ma) Dd > Sandwich Bay and Battle Harbour dykes e.g., Paradise Arm intrusion and Hawke Bay intrusive suite

> P_{3C}dr Diorite, quartz diorite and tonalite; locally grading into leucogabbronorite P_{3C}ga Alkali-feldspar granite, granite and quartz syenite forming discrete plutons

> > P_{3C}mn Monzonorite and monzogabbro

P_{3C}mz Monzonite, including minor syenite

P_{3C}d Unnamed mafic dykes

P_{3C}mq Quartz monzonite, including rare quartz syenite

P_{3C}yq Syenite to quartz syenite forming discrete plutons

e.g., White Bear Arm complex and Sand Hill Big Pond intrusion

P_{3C}an Massive to strongly foliated anorthosite and leucogabbronorite

P_{3C}ag P_{3C}am P_{3C}an P_{3C}rg P_{3C}ln P_{3C}lt P_{3C}um

P_{3C}lt Primary textured to recrystallized leucotroctolite

ag: P_{3B}an P_{3B}ln P_{3B}mn P_{3B}rg P_{3B}um

P_{3B}rg Weakly foliated to gneissic gabbro and norite

showing cumulate textures

e.g., Neveisik Island and Red Island events

melanocratic variants

P_{3C}dr P_{3C}ga P_{3C}gd P_{3C}gps P_{3C}gr P_{3C}mn P_{3C}mq P_{3C}mz P_{3C}yq P_{3C}d /

LATE LABRADORIAN ANORTHOSITIC AND MAFIC INTRUSIONS (P_{3C} 1660 – 1600 Ma)

P_{3C}ag Weakly to markedly foliated mafic granulite, plus leucocratic and melanocratic variants

P_{3C}rg Massive to strongly foliated gabbro and norite, commonly layered; subophitic and locally

P_{3c}ln Primary textured to recrystallized leucogabbronorite and leucogabbro; coronitic locally

EARLY LABRADORIAN MAFIC AND ASSOCIATED ROCKS (P_{3B} 1710 – 1660 Ma)

P_{3B}ag Weakly foliated to gneissic amphibolite and mafic granulite, plus leucocratic and

P_{3B}In Weakly foliated to gneissic leucogabbronorite and leucogabbro; coronitic locally

P_{3B}um Massive, weakly or strongly foliated ultramafic rocks, commonly layered and locally

EARLY LABRADORIAN GRANITOID AND ASSOCIATED ROCKS (ca. 1678 and 1671 Ma)

P_{3B}gd Foliated to gneissic granodiorite and compositionally equivalent well-banded gneiss

P_{3B}gr Foliated to gneissic granite and alkali-feldspar granite, and compositionally equivalent well-

P_{3B}mq Foliated to gneissic quartz monzonite, grading into diorite or syenite, and compositionally

P_{3B}ya Foliated to gneissic syenite, alkali-feldspar syenite and alkali-feldspar granite, and

P_{3B}am Amphibolite skialiths, lenses and layers (mainly remnants of former dykes)

PRE-LABRADORIAN GRANITOID ROCKS (P_{3A} 1800 – 1710 Ma) P_{3A}ag: P_{3A}dr P_{3A}gd P_{3A}gg P_{3A}gr P_{3A}ln P_{3A}am

P_{3B}mz Foliated to gneissic monzonite and monzodiorite, and compositionally equivalent well-banded

P_{3A}dr Foliated to gneissic diorite to quartz diorite, and compositionally equivalent well-banded gneiss

P_{3A}gr Foliated to gneissic granite and alkali-feldspar granite, and compositionally equivalent well-

P_{3A}In Foliated to gneissic leucogabbronorite, and compositionally equivalent well-banded gneiss

P_{3A}ss Quartz-feldspar psammitic schist and gneiss; medium grained and commonly rusty-weathering

P_{3A}sx Metasedimentary diatexite; coarse grained to pegmatitic and characteristically white-weathering

P_{3A}Vf Fine- to medium-grained, banded quartzofeldspathic rocks; locally have lensoid shapes, possibly

P_{3A}vm Fine- to medium-grained, banded amphibolite containing quartz-feldspar layers and calc-silicate

P_{2C}dr Foliated to gneissic diorite to quartz diorite, and compositionally equivalent well-banded gneiss

P_{2C}gr Foliated to gneissic granite and alkali-feldspar granite, and compositionally equivalent well-banded

P_{2C}mz Foliated to gneissic monzonite to monzodiorite, and compositionally equivalent well-banded gneiss

P_{2C}ya Foliated to gneissic syenite to alkali-feldspar syenite, and compositionally equivalent well-banded

P_{2C}gd Foliated to gneissic granodiorite and compositionally equivalent well-banded gneiss

P_{2C}mq Foliated to gneissic quartz monzonite, grading into diorite or syenite, and compositionally

P_{2C}gp Foliated to gneissic megacrystic/porphyritic granitoid rocks, augen gneiss

P_{2C}am Amphibolite skialiths, lenses and layers (mainly remnants of former dykes)

P_{2C}sc Calc-silicate rocks, compositionally layered, medium grained

P_{2C}so Conglomerate and agglomerate, partially of volcanic origin

P_{2C}vb Volcanic breccia, angular clasts, grading into agglomerate

indicating felsic volcanoclastic protolith

pods; interpreted as mafic volcanic rocks

P_{2C}vp Felsic volcanic porphyry interpreted to be hypabyssal

P_{2C}sp Fine- to medium-grained pelitic schist and gneiss

P_{2C}sq Quartzite, meta-arkose, thin to thick bedded

P_{2C}rg Massive to strongly foliated gabbro and norite, commonly layered; subophitic and locally

P_{2C}ss Quartz-feldspar psammitic schist and gneiss; medium grained and commonly rusty-weathering

P_{2C}vf Fine- to medium-grained, banded quartzofeldspathic rocks; locally have lensoid shapes, possibly

P_{2C}vm Fine- to medium-grained, banded amphibolite containing quartz-feldspar layers and calc-silicate

P_{3A}gd Foliated to gneissic granodiorite and compositionally equivalent well-banded gneiss

P_{3A}gp Foliated to gneissic megacrystic/porphyritic granitoid rocks, augen gneiss

P_{3A}am Amphibolite skialiths, lenses and layers (mainly remnants of former dykes)

PRE-LABRADORIAN SUPRACRUSTAL ROCKS (P_{3A} 1800 – 1710 Ma) (Age uncertain; certainly pre-1670 Ma, probably 1800 – 1770 Ma)

P_{3A}sc Calc-silicate rocks, compositionally layered, medium grained

P_{3A}SC P_{3A}SP P_{3A}SQ P_{3A}SS P_{3A}SX P_{3A}Vf P_{3A}Vm

P_{3A}sp Fine- to medium-grained pelitic schist and gneiss

indicating felsic volcanoclastic protolith

MID PALEOPROTEROZOIC (P₂ 2100 – 1800 Ma)

LATE MID PALEOPROTEROZOIC (P_{2C} 1900 – 1800 Ma)

P_{2C}ga Alkali-feldspar granite, granite and quartz syenite

P_{2C}dr P_{2C}ga P_{2C}gd P_{2C}gp P_{2C}gr P_{2C}mq P_{2C}mz P_{2C}ya P_{2C}yq

Granitoid and related intrusive rocks

P_{2C}yq Syenite to quartz syenite

P_{2C}d Unnamed mafic dykes

P_{2C}SC P_{2C}SO P_{2C}SP P_{2C}SQ P_{2C}SS

P_{2C}vb P_{2C}vf P_{2C}vi P_{2C}vm P_{2C}vp

P_{2C}vi Intermediate volcanic rocks

Sedimentary protolith

Volcanic protolith

Mafic and associated intrusive rocks

P_{3A}sq Quartzite, meta-arkose, thin to thick bedded

Sedimentary protolith

Volcanic protolith

P_{3B}gp Foliated to gneissic megacrystic/porphyritic granitoid rocks, augen gneiss

P_{3B}dr Foliated to gneissic diorite to quartz diorite, and compositionally equivalent well-banded gneiss;

e.g., Alexis River anorthosite (assigned here although age is uncertain)

P_{3B}an Weakly foliated to gneissic anorthosite and leucogabbronorite

P_{3B}mn Weakly foliated to gneissic monzonorite and monzogabbro

P_{3B}dr | P_{3B}gd | P_{3B}gp | P_{3B}gr | P_{3B}mq | P_{3B}mz | P_{3B}ya | P_{3B}6

in part derived from leucogabbronorite

equivalent well-banded gneiss

P_{3A}ag Mafic granulite skialiths, lenses and layers

P_{3C}um Massive, weakly or strongly foliated ultramafic rocks, commonly layered and locally showing

P_{3C}am Weakly to markedly foliated amphibolite, plus leucocratic and melanocratic variants

Bradore Formation (subdivided into L'Anse-au-Clair, Crow Head and Blanc-Sablon members) P_{3C}gd Granite to granodiorite forming discrete unmigmatized plutons NEOPROTEROZOIC – EARLY CAMBRIAN P_{3C}gp Megacrystic/porphyritic granite to granodiorite

P_{3C}gr Granite and minor alkali-feldspar granite

NC*Lc* Lighthouse Cove Formation NCBa Bateau Formation

NEOPROTEROZOIC

EARLY CAMBRIAN

CFo Forteau Formation

NDm∵ NGi∷ NSb∷ NDm Double Mer Formation

NGi Gilbert arkose NSb Sandwich Bay conglomerate

Nc Clastic dykes

Nd Long Range dykes Nq Quartz veins

M_{3D}d Unnamed mafic dykes

LATE MESOPROTEROZOIC (M₃ 1200 – 900 Ma) LATE POST-GRENVILLIAN INTRUSIONS (M_{3D} ca. 975 – 955 Ma) e.g., Chateau Pond granite

M_{3D}gp M_{3D}gr M_{3D}ln M_{3D}mn M_{3D}mq M_{3D}mz M_{3D}yq M_{3D}d /

M_{3D}gp Massive to weakly foliated megacrystic/porphyritic granite to quartz monzonite M_{3D}gr Massive to weakly foliated granite to alkali-feldspar granite

M_{3D}ln Massive to weakly foliated leucogabbro to leuconorite M_{3D}mn Massive to weakly foliated monzogabbro and monzonorite

M_{3D}mq Massive to weakly foliated quartz monzonite; mantled feldspar textures

M_{3D}mz Massive to weakly foliated monzonite to monzodiorite

M_{3D}yq Massive to weakly foliated syenite, quartz syenite and alkali-feldspar quartz syenite

EARLY POST-GRENVILLIAN INTRUSIONS (M_{3C} ca. 985 – 975 Ma) e.g., Beaver Brook and Picton Pond plutons M_{3C}gr M_{3C}ln M_{3C}mn M_{3C}mq M_{3C}rg M_{3C}yq M_{3C}d /

M_{3C}gr Weakly to moderately foliated granite to alkali-feldspar granite

M_{3C}ln Weakly to moderately foliated leucogabbro to leuconorite

M_{3C}mn Weakly to moderately foliated monzogabbro to monzonorite M_{3C}mq Weakly to moderately foliated monzonite to quartz monzonite

M_{3C}rg Weakly to moderately foliated gabbro, norite and troctolite

M_{3C}yq Weakly to moderately foliated syenite, quartz syenite and alkali-feldspar syenite

M_{3C}d L'Anse-au-Diable, York Point, Gilbert Bay mafic dykes SYN-GRENVILLIAN INTRUSIONS (M_{3B} ca. 1085 – 985 Ma)

M₃Bgd M₃Bgg M₃Bgr M₃Byn M₃Bd ✓

M_{3B}gd Moderately to strongly foliated granodiorite to quartz diorite

M_{3B}gp Moderately to strongly foliated megacrystic/porphyritic granodiorite to quartz diorite M_{3B}gr Moderately to strongly foliated granite to alkali-feldspar granite

M_{3B}yn Moderately to strongly foliated aegerine- or nepheline-bearing syenite

PRE-GRENVILLIAN INTRUSIONS (M_{3A} ca. 1200 – 1085 Ma)

M_{3B}d Unnamed mafic dykes (Makkovik Province and adjacent Grenville Province)

e.g., Gilbert Bay pluton

M_{3A}gr Weakly to strongly foliated granite M_{3A}mn Weakly to strongly foliated monzonite to monzonorite

MIDDLE MESOPROTEROZOIC (M₂ 1350 – 1200 Ma) e.g., Upper North River intrusion

 M_2 gr M_2 rg M_2 yq M_2 d \nearrow

M₂gr Weakly to strongly foliated granite and alkali-feldspar granite M₂rg Weakly to strongly foliated gabbronorite (in database only - Lourdes-de-Blanc-Sablon intrusion,

M₂yq Weakly to strongly foliated syenite, quartz syenite and alkali-feldspar syenite

M₂d Mealy dykes

EARLY MESOPROTEROZOIC (M₁ 1600 – 1350 Ma) e.g., Upper Paradise River, Kyfanan Lake and 13B/12 intrusions, and Michael Gabbro

 M_1 an M_1 am M_1 dr M_1 gp M_1 gr M_1 ln M_1 mn M_1 mn M_1 mq M_1 mz M_1 rg M_1 um M_1 yq M_1 d M_2

M₁an Massive or weakly foliated anorthosite to leucogabbronorite, indistinctly layered in places M₁am Weakly to markedly foliated amphibolite, plus leucocratic and melanocratic variants;

granulite facies equivalents M₁dr Massive, weakly or strongly foliated diorite to amphibolite, may be metamorphic derivative

of monzodiorite or leucogabbronorite M₁gp Moderately to strongly foliated megacrystic/porphyritic granitoid rocks

M₁gr Massive, weakly or strongly foliated granite to quartz monzonite

M₁In Massive, weakly or strongly foliated leucogabbronorite and anorthositic gabbro, locally

grading into gabbronorite, locally coronitic M₁mn Moderately to strongly foliated monzonorite

M₁mq Moderately to strongly foliated monzonite to quartz monzonite

M₁mz Moderately to strongly foliated monzonite to monzodiorite

M₁rg Massive to strongly foliated gabbro, norite and troctolite, commonly layered; subophitic and locally coronitic; includes recrystallized derivatives retaining igneous textures

M₁um Massive, weakly or strongly foliated ultramafic rocks, commonly layered and locally showing

M₁yq Moderately to strongly foliated syenite and quartz syenite

M₁d Mafic dykes; includes Michael Gabbro

LATE PALEOPROTEROZOIC AND EARLY MESOPROTEROZOIC (PM 1800 – 1350 Ma) (Ages generally unknown, but ca. 1650 Ma and 1500 – 1470 Ma rocks identified)

RECRYSTALLIZED IGNEOUS ROCKS
 PMdr
 PMgd
 PMgp
 PMgr
 PMln
 PMmd
 PMmq
 PMrg
 PMtn
 PMyq

PMdr Medium-grained, equigranular, recrystallized weakly to strongly foliated diorite, quartz diorite

and to leucoamphibolite PMgd Weakly to strongly foliated granite to granodiorite

PMgp Megacrystic/porphyritic recrystallized granite to quartz monzonite

Medium- to coarse-grained, recrystallized weakly to strongly foliated granite and alkali-feldspar

PMIn Medium- to coarse-grained, recrystallized leuconorite, leucogabbro

PMmd Medium- to coarse-grained, recrystallized, weakly to strongly foliated, monzodiorite to monzonite

PMmq Medium- to coarse-grained, recrystallized, weakly to strongly foliated quartz monzonite

PMrg Medium- to coarse-grained, gabbro, norite and troctolite

PMtn Medium- to coarse-grained, recrystallized, weakly to strongly foliated tonalite to granodiorite PMyq Medium- to coarse-grained, recrystallized, weakly to strongly foliated syenite, alkali-feldspar

syenite and quartz syenite

PMam Amphibolite; generally thought to be derived from mafic dykes SUPRACRUSTAL ROCKS PROVISIONALLY ASSIGNED AS PITTS HARBOUR GROUP

PMsc PMsp PMsq PMss PMsx PMvf PMvm

Sedimentary protolith PMsc Calc-silicate rocks, compositionally layered, medium grained

PMsp Pelitic schist and gneiss

PMsq Quartzite, meta-arkose, thin to thick bedded

PMss Quartz-feldspar psammitic schist and gneiss; medium grained

PMsx Coarse-grained to pegmatitic-granitic material (diatexite), characteristically associated with psammitic gneiss and quartzite

Volcanic protolith PMvf Fine- to medium-grained, banded quartzofeldspathic rocks; locally having lensoid shapes,

possibly indicating felsic volcaniclastic protolith PMvm Fine- to medium-grained, banded amphibolite containing quartz-feldspar layers and calc-silicate

AGE GENERALLY POORLY CONSTRAINED

β δ β Brittle deformation; cataclastic rocks, pseudotacholite

pods; interpreted as mafic volcanic rocks

δ Ductile deformation; mylonite, straight gneiss AGE GENERALLY POORLY CONSTRAINED f k p q

f Aplite, microgranite (felsite) k Carbonate vein p Pegmatite

q Quartz vein

2. Uncoloured units do not appear as polygons on maps, but are in unit-designator strings in database. 3. Some mafic dykes also shown as polygons (especially where orientation is unknown).

1. Legend is common to all maps (Map 2010-01 to Map 2010-25), but all units do not appear on every map.